

8° ENEPE UFGD • 5° EPEX UEMS

ATRIBUTO FÍSICO DO SOLO EM FUNÇÃO DE SISTEMAS DE CULTIVO E VELOCIDADE DE DESLOCAMENTO

Mauricio Viero Rufino¹; Jorge Wilson Cortez²; Paulo Henrique Nascimento de Souza³; Renan Miranda Viero³; Eduardo Freitas Rodrigues³; Rodrigo Gonçalves Chaves ⁴.

Bolsista de Iniciação Científica PIBIC-CNPq. Universidade Federal da Grande Dourados (UFGD). Faculdade de Ciências Agrárias (FCA). Dourados, MS. Rodovia Dourados-Itahum, km 12. Caixa Postal 533. Bairro Aeroporto. CEP 79804-970. Email: mauricioviero@hotmail.com
(FCA). Orientador e Bolsista de Produtividade em Pesquisa.
Mestrando em Engenharia Agrícola da UFGD, Bolsista Fundect.

RESUMO

O objetivo deste trabalho foi avaliar o efeito ocasionado na resistência mecânica do solo à penetração por sistemas de manejo do solo sendo: plantio direto, plantio direto escarificado, plantio direto escarificado cruzado, preparo convencional, preparo reduzido e preparo conservacionista, associados a velocidades teóricas de deslocamento na semeadura. O trabalho foi desenvolvido na FAECA Fazenda Experimental de Ciências Agrárias da Universidade Federal da Grande Dourados – UFGD, em Dourados-MS, em Latossolo Vermelho distroférrico, de textura muito argilosa. Foi avaliada a resistência mecânica do solo à penetração (RP) com um penetrômetro de impacto. A RP foi máxima quando foi utilizado o Sistema Plantio Direto, este, quando escarificado minimizou os efeitos da compactação do solo assemelhando-se aos valores dos manejos com revolvimento do solo.

Palavras-chave: sistema plantio direto, compactação do solo, mecanização agrícola.

INTRODUÇÃO

Hoje a agricultura é dependente do uso de maquinários cada vez mais pesados e em grande escala de produção, as alterações físicas relacionadas ao tráfego ocasionam compactação do solo podendo interferir no desenvolvimento da cultura. O uso de máquinas agrícolas pode ocasionar modificações na estrutura do solo, principalmente quando não respeitam as condições favoráveis para a realização dessas atividades, causando barreiras físicas ao desenvolvimento radicular das culturas e posteriormente redução de produtividade de grãos (MÜLLER, 2011).

Objetivou-se avaliar o efeito ocasionado pelos sistemas de manejo (plantio direto, plantio direto escarificado, plantio direto escarificado cruzado, preparo convencional, preparo reduzido e preparo conservacionista), associados a velocidades de deslocamento na semeadura na resistência mecânica do solo à penetração.

MATERIAIS E MÉTODOS

O trabalho foi conduzido na FAECA – Fazenda Experimental de Ciências Agrárias da Universidade Federal da Grande Dourados – UFGD no município de Dourados, MS. O clima é do tipo Cwa, segundo a classificação de Köppen. O solo da área é um Latossolo Vermelho distroférrico, conforme o Sistema Brasileiro de Classificação de Solos (EMBRAPA, 2006).

No preparo das parcelas dos sistemas de manejo do solo utilizou-se escarificador de cinco hastes, com ponteira estreita de 0,08 m a 0,40 m de profundidade (tratamentos com escarificação); arado de aivecas recortadas com 0,40 m de profundidade (preparo convencional); Grade destorroadora-niveladora, tipo off-set, de arrasto, com 20 discos de 0,51 m de diâmetro (20") em cada seção, sendo na seção dianteira discos recortados e lisos na traseira, na profundidade de 0,15 m (preparo convencional, reduzido e escarificado cruzado). Para as operações de preparo utilizou-se de trator Massey Fergusson MF292, 4x2 TDA, com 67,71 kW (92 cv) de potência nominal no motor a uma rotação de 2400 rpm,; e um trator New Holland 8030 4x2 TDA com 89,79 kW (122 cv) de potência nominal no motor a uma rotação de 2200 rpm, na operação de escarificação.

A semeadora-adubadora utilizada foi com sistema pneumático de distribuição, e haste sulcadora para adubo, possuindo sete fileiras para soja, com dosador de adubo tipo helicoide, e discos de 60 furos, rodas duplo angulada (V) para compactação. O trator utilizado na semeadura foi o MF292.

Foi utilizado o delineamento em blocos ao acaso no esquema de parcela subdividida e quatro repetições (blocos). Os tratamentos foram compostos por seis sistemas de manejo, aplicados nas parcelas: plantio direto (PD), plantio direto escarificado (PDe), plantio direto escarificado cruzado (PDec), preparo convencional (PC), preparo reduzido (PR) e preparo conservacionista (PCs). E as velocidades de semeadura aplicada na subparcela no momento da semeadura da soja, pelo escalonamento de marchas do trator, resultando nas velocidades médias de 4,6; 5,5; 7,3 e 7,8 km h⁻¹, sendo avaliado apenas o fator resistência mecânica do solo à penetração.

Coletou-se dados da resistência mecânica do solo à penetração (RP), sendo um ponto na região central de cada subparcela por meio de um penetrômetro de impacto modelo IAA/Planalsucar-Stolf, adaptado pela KAMAQ (STOLF et al., 2011). Para a determinação do teor de água no solo coletou-se amostras nas camadas de 0-0,10; 0,10-0,20; 0,20-0,30; 0,30-0,40; 0,40-0,50 e 0,50-0,60 m de modo aleatório. O teor de água no solo foi determinado pelo método gravimétrico, de acordo com metodologia proposta por Embrapa (1997), em amostras deformadas de solo seco em estufa. Na Tabela 1 é apresentado o teor de água no solo no momento da coleta de dados da resistência mecânica do solo à penetração.

Tabela 1. Teor de água no solo no momento da coleta da resistência mecânica do solo à penetração.

Camada (m)	Teor de água no solo (%)					
	PD	PR	PC	PCS	PDe	PDec
0,00-0,10	13,6	11,4	10,5	11,4	12,3	13,9
0,10-0,20	12,7	13,6	12,2	12,6	13,5	14,5
0,20-0,30	12,9	12,8	13,0	15,4	25,2	18,5
0,30-0,40	14,5	13,7	14,6	14,9	15,4	18,2
0,40-0,50	14,7	24,8	15,1	18,2	16,3	18,2
0,50-0,60	14,5	22,4	16,4	18,5	19,6	22,8

Plantio direto (PD); plantio direto escarificado (PDe); plantio direto escarificado cruzado (PDec); preparo convencional (PC); preparo reduzido (PR) e preparo conservacionista (PCs)

A análise dos dados em parcela subdividida foi realizada pela análise de variância e posteriormente, quando significativo, com o teste de Tukey a 5% de probabilidade para comparação de médias.

RESULTADOS E DISCUSSÃO

O plantio direto mostrou maior resistência à penetração (RP) até 0,30 m de profundidade do perfil, se igualando aos demais manejos com o aumento da profundidade, sendo que entre 0,40-0,60 m não houve diferença nos manejos (Tabela 2). Valores elevados de RP na camada superficial do solo, em plantio direto, também foram observados por Tavares Filho et al., (2001) e Stone & Silveira (2001). A velocidade de semeadura não influenciou na RP na camada de 0-0,10 m (Tabela 2). A RP reduziu de acordo com o aumento da velocidade, fato este, que pode ser justificado pela dispersão do solo em decorrência da intensidade do tráfego da semeadora-adubadora, e o menor tempo de pressão. A elevação da velocidade aumenta a ação da máquina nas características físicas do solo, decrescendo a atuação de forças de coesão

entre as partículas do solo e o atrito interno, provocando então a diminuição da RP. Ao contrário, a RP tende a aumentar com a redução da velocidade e o efeito reduzido da semeadora-adubadora na dispersão do solo.

Tabela 2. Síntese dos valores de análise de variância e do teste de médias para resistência mecânica do solo à penetração (MPa).

	Camadas (m)					
	0,0-0,10	0,10-0,20	0,20-0,30	0,30-0,40	0,40-0,50	0,50-0,60
Manejo (M)			-			
PC	1,05 b	1,86 b	2,49 b	2,91 b	3,80	4,90
PR	1,35 b	2,23 b	3,20 b	3,80 ab	5,10	5,91
PD	2,23 a	4,85 a	5,86 a	4,39 a	4,81	5,10
PDe	1.39 b	1,98 b	2,61 b	4,05 ab	5,06	5,61
PDec	1,22 b	1,94 b	3,08 b	4,17 a	5,02	6,24
PCS	1,26 b	1,94 b	2,74 b	3,41 ab	4,60	5,99
Velocidade (V)						
4,6 km h-1	1,50	2,80 a	3,78 a	4,51 a	5,78 a	6,65 a
5,5 km h-1	1,45	2,35 b	3,19 ab	3,67 ab	4,88 b	5,75 ab
7,3 km h-1	1,36	2,46 ab	3,31 ab	3,64 ab	4,46 bc	5,19 b
7,8 km h-1	1,36	2,26 b	3,05 b	3,33 b	3,81 c	4,91 b
Teste de F						_
M	17,27**	23,88**	22,88**	4,23*	1,67 ns	2,05 ns
V	0,89ns	3,67*	3,09*	4,53**	13,59**	9,08**
MxV	1,93*	1,59ns	1,24 ns	1,35 ns	1,38 ns	1,04 ns
C.V. Parcela (%)	28,22	38,96	31,86	27,95	32,39	26,27
C.V. Sub (%)	25,15	24,32	26,52	30,75	23,17	22,23

NS: não significativo (P>0,05); *: significativo (P<0,05); **: significativo (P<0,01); C.V.: coeficiente de variação. Plantio direto (PD); plantio direto escarificado (PDe); plantio direto escarificado cruzado (PDec); preparo convencional (PC); preparo reduzido (PR) e preparo conservacionista (PCs).

Quando se analisa a interação manejo versus velocidade (Tabela 3) para a camada 0-0,10 m, fica evidenciado que o Sistema Plantio Direto (PD) proporciona maior RP. Apesar da semelhança dos valores de umidade entre PC e PD, nas camadas subsuperficiais (Tabela 1), a maior RP em PD é resultado da maior compactação do solo, com maior densidade e menor volume de macroporos. Os maiores valores de RP no PD podem influenciar a produtividade, uma vez que afetam diretamente o crescimento das raízes e parte aérea, e indiretamente devido a um deficiente fornecimento de água e nutrientes (MASLE & PASSIOURA, 1987). Pode se verificar o efeito do escarificador na redução do efeito da compactação do solo, com os menores valores de RP do plantio direto escarificado e plantio direto e escarificado cruzado (2,39 e 1,22 MPa respectivamente), o que justifica a necessidade da realização de escarificação ao longo do tempo com a utilização do PD.

Tabela 3. Desdobramento da interação manejo x velocidade para resistência mecânica do solo à penetração (MPa).

	(======================================							
	Velocidades (km h-1)							
Manejos	4,6	5,5	7,3	7,8				
	0,0-0,10 m							
PC	0,88bA	1,05 bA	1,05 bA	1,22 bA				
PR	1,39 bA	1,39 abA	1,39 abA	1,22 bA				
PD	2,91 aA	1,90 aB	1,90 aB	2,24 aB				
PDe	1,39 bA	1,73 abA	1,22 abA	1,22 bA				
PDec	1,22 bA	1,22 abA	1,22 abA	1,22 bA				
PCS	1,22 bA	1,39 abA	1,39 abA	1,05 bA				

Médias seguidas de mesma letra, minúscula nas colunas e maiúscula na linha, não diferem entre si pelo teste de Tukey a 5% de probabilidade.Plantio direto (PD); plantio direto escarificado (PDe); plantio direto escarificado cruzado (PDec); preparo convencional (PC); preparo reduzido (PR) e preparo conservacionista (PCs).

CONCLUSÕES

A resistência mecânica a compactação foi alta quando foi utilizado o Plantio Direto, este, quando escarificado minimizou os efeitos da compactação do solo. O plantio direto escarificado cruzado não diferiu do plantio direto escarificado. O aumento da velocidade de semeadura diminuiu a resistência mecânica do solo à penetração.

AGRADECIMENTOS

Ao CNPQ pela concessão de bolsa de IC ao primeiro autor, pela bolsa de produtividade do segundo autor. A UFGD pela concessão de bolsa de IC ao terceiro autor. A FUNDECT pela concessão de bolsa de mestrado ao sexto autor.

REFERÊNCIAS

EMBRAPA – EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Centro Nacional de Pesquisas de Solos. Manual de métodos de análise do solo. Rio de Janeiro: 1997. 212 p.

EMBRAPA – EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Sistema Brasileiro de Classificação de Solos. Brasília: **Centro Nacional de Pesquisas de Solos**, 2006. 370p.

MASLE, J.; PASSIOURA, J.B. The effect of soil strength on the growth of young wheat plants. **Australian Journal of Plant Physiology**, v.14, p.643-656, 1987.

MÜLLER, J. Atributos físicos do solo e produtividade da soja em função de doses de resíduos vegetais e tráfego de maquinas em semeadura direta. 2011. 71 f. Dissertação (Mestrado em Ciência do solo) — Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2011.

STOLF, R.; MURAKAMI, J. H.; MANIERO, M. A.; SOARES, M. R.; SILVA, L. C. F. Incorporação de régua para medida de profundidade no projeto do penetrômetro de impacto Stolf. In: Congresso Brasileiro de Engenharia Agrícola, XL, Cuiabá, 2011. **Anais...** Cuiabá: SBEA, 2011. p. 1-10. DC-ROM.

STONE, L. F.; SILVEIRA, P. M. Efeitos do sistema de preparo e da rotação de culturas na porosidade e densidade do solo. **Revista Brasileira de Ciência do Solo**, v.25, n.2, p.395-401, 2001.

TAVARES FILHO, J.; BARBOSA, G.M.C.; GUIMARÃES, M.F.; FONSECA, I.C.B. Resistência do solo a penetração e desenvolvimento do sistema radicular do milho (Zea mays) sob diferentes sistemas de manejo em um Latossolo Roxo. **Revista Brasileira de Ciência do Solo**, v.25, n.3, p. 725-730, 2001.